

Biosynthesis of Diterpenoid Moiety of Brasilicardin A via Non-mevalonate Pathway in Nocardia brasiliensis

Hideyuki Shigemori, Hisayuki Komaki^a, Katsukiyo Yazawa^a, Yuzuru Mikami^a, Akira Nemoto^b, Yasushi Tanaka^b, and Jun'ichi Kobayashi*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, ^aResearch Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 260-8673, Japan, and ^bResearch Laboratory, Higeta Shoyu Co., Ltd., Chiba 288-8680, Japan

Received 4 March 1999; revised 23 March 1999; accepted 26 March 1999

Abstract: The diterpenoid moiety of brasilicardin A (1), isolated from the actinomycete Nocardia brasiliensis IFM 0406, was shown to be biosynthesized from D-glucose via the non-mevalonate pathway. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: biosynthesis; non-mevalonate pathway; Nocardia; terpenoids

In our continuing search for new bioactive metabolites from pathogenic actinomycete *Nocardia* strains, we have isolated a novel tricyclic metabolite, brasilicardin A (1), with potent immunosuppressive activity from *N. brasiliensis* IFM 0406.^{1,2} The perhydrophenanthrene skeleton of 1 seems to be derived from isopentenyl diphosphates. Recently, the non-mevalonate pathway in the biosynthesis of terpenoids from actinomycetes *Streptomyces* was proposed.^{3,4} These results promoted us to examine the biosynthetic pathway of the aglycon of brasilicardin A (1).

Figure 1. ¹³C-Labelling pattern in brasilicardin A (1) derived from [1-¹³C]glucose

carbon	chemical shift	peak height ^a	carbon	chemical shift	peak height
1	44.47	2.0	13	138.96	2.7
2	80.26	13.1	14	52.75	1.0
3	83.78	1.3	15	32.45	22.2
4	41.67	1.6	16	80.86	21.3
5	46.73	1.0	OMe	59.01	2.8
6	19.18	14.9	17	55.07	1.9
7	31.76	1.8	18	170.35	4.0
8	39.02	4.1	19	17.79	10.1
9	47.88	1.0	20	29.71	2.1
10	38.06	1.5	21	29.39	10.7
11	27.55	33.0	22	23.00	21.1
12	124.11	1.9	23	23.02	13.9

Table 1. 13C-Chemical shifts and normalized peak height of brasilicardin A (1) derived from D-[1-13C]glucose

One loopful of the culture from slant culture of N. brasiliensis IFM 0406 was inoculated into 100 mL-Erlenmeyer flasks containing 20 mL of a seed culture medium (2% glycerol-enriched brain heart infusion medium) and the inoculated flasks were shaken at 32 °C for 4 days. Ten milliliters of the seed cultures were inoculated into 500-mL shake flasks containing 100 mL of the production medium (0.3 % glucose, 1 % polypeptone, and 0.6 % beef extract, pH 7.0), and incubated at 32 °C. After incubation for 9 h, D-[1-¹³C|glucose (at a final concentration of 0.2 %) was added to the culture and cultivation was continued at 32 °C for 39 h. The supernatant of the fermentation broth was applied to a Diaion HP-20 column and further purified by the method described previously. ^{1,2} From 1 L of culture broth, 25 mg of brasilicardin A (1) was obtained.

The ¹³C NMR spectrum of brasilicardin A (1) derived from D-[1-¹³C]glucose showed clear increment of the signals of C-2, C-6, C-11, C-15, C-19, C-21, C-22, and C-23 in the perhydrophenanthrene skeleton (Fig. 1 and Table 1), indicating that the perhydrophenanthrene skeleton was a tricyclic diterpenoid derived from geranylgeranyl phosphate. The increment of a signal of C-16 suggested that the amino acid moiety (C-16 ~ C-18) might be derived from [3-13C]pyruvate. Incorporation of the label into these positions is explained by glycolysis of the labeled glucose to [3-13C]pyruvate and [3-13C]glyceraldehyde 3-phosphate to form [1,5-¹³C₂]isopentenyl diphosphate (IPP) by operation of the non-mevalonate pathway (Fig. 1).⁵ Therefore, these results indicate that N. brasiliensis uses the non-mevalonate pathway in the synthesis of brasilicardin A (1). This is the first example showing that Nocardia utilizes the non-mevalonate pathway for the formation of IPP.

Acknowledgment: This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- Shigemori, H.; Komaki, H.; Yazawa, K.; Mikami, Y.; Nemoto, A.; Tanaka, Y.; Sasaki, T.; In, Y.; 1 Ishida, T.; Kobayashi, J. J. Org. Chem. 1998, 63, 6900-6904.
- Komaki, H.; Nemoto, A.; Tanaka, Y.; Takagi, H.; Yazawa, K.; Mikami, Y.; Shigemori, H.; Kobayashi, J.; Ando, A.; Nagata, Y. J. Antibiot. 1999, 52, 13-19.
 Orihara, N.; Furihata, K.; Seto, H. J. Antibiot. 1997, 50, 979-981.
 Irie, K.; Nakagawa, Y.; Tomimatsu, S.; Ohigashi, H. Tetrahedron Lett. 1998, 39, 7929-7930. 2.

- Rohmer, M.; Seemann, M.; Horbach, S.; Bringer-Meyer, S.; Sahm, H. J. Am. Chem. Soc. 1996, 118, 2564-2566.

a) The signal intensities were corrected by those of unlabeled 1 and normalized to C-9.